Integrated Design Capability / Instrument Design Laboratory

Ocean Color Experiment Ver. 2 (OCE2)

~ Concept Presentations~

Flight Software

Kequan Luu

April 27, 2011

Do not distribute this material without permission from the Scientific Point of Contact Jay Smith (James.C.Smith@nasa.gov) or the Programmatic Point of Contact Angela Mason (Angela.J.Mason@nasa.gov)
This document contains sensitive information and is intended for NASA Official Use Only

- Electrical Block Diagrams
- Flight Software Requirements
- Conceptual Architecture
- LOC Estimate for SEER Input
- Summary
- Back up charts (estimates, testing, etc.)

Electrical Block Diagram From Electrical Presentation

Flight Software Requirements

Integrated Design Capability / Instrument Design Laboratory

Driving Requirements

- Mode management (Boot, standby/ engineering, Sun/Moon calibration, Observation, etc.)
- Time management
 - Keeps real time synch with s/c CDH
 - Timing requirement is 1 ms accuracy
- Instrument command & configuration
 - Command processing

OCE2 Study Week: 4/23 - 4/27/12

- Setup/Control digitizer boards (i.e. 12x close-loop control of integration interval)
- Collect science/Calibration/HK data and send to S/C, multi-APID support for each data stream
- 14x PID thermal controllers for detectors @1Hz, , +/-1 degree stability
- Power switching services for instrument subsystem
- Mechanisms control (5 mechanisms: Primary and ½ Angle Mirror, Momentum Compensator, Tilt, Calibration)

Interfaces

- 1PPS (S/C) time
- 1553 (S/C) Instr Command and HK Tlm
- Digital I/O (Inst) Heaters, Thermal Sensors
- RS-422 (Inst) Mechanisms Control Box
- Serial I/F (Instr) Digitizer Box
- SpaceWire/LVDS science data to s/c

Derived

- Bootstrap
- Diagnostics
- RTEMS RTOS
- MEB Software Management (i.e. memory load/dump, software/table updates)
- MEB Software Health & Safety

NOT Requirements

- Science Data Processing: performed by SOC
- Detectors readout, data integration/aggregation: performed by H/W
- Compression: performed by H/W
- Stored Command Processing: performed by S/C
- Science Data Broadcasting/Recording: performed by S/C
- Failure Detections & Corrections: performed by S/C

Flight Software Architecture

MEB Processor Utilization Estimates

Integrated Design Capability / Instrument Design Laboratory

	25	16	MHz Coldfire (effective rate)	BAE750(%)	12Mhz ST5/SD	60Mhz LRO
	CPU Perc			Base Value		3.75
Component	50 Mhz	32 Mhz	Basis of Estimate			
cFE	0.12	0.19	LRO B2.5 Measured	0.05		0.19
HK Data Storage	0.12	0.19	LRO B2.5 Measured	0.05		0.19
Memory Manager	0.01	0.02	LRO B2.5 Measured	0.01		0.02
Health & Safety	0.17	0.26	LRO B2.5 Measured	0.07		0.26
Stored Commands	0.00	0.00	LRO B2.5 Measured	0.00		0.00
Limit Checker	0.00	0.00	LRO B2.5 Measured	0.00		0.00
Scheduler	1.46	2.29	LRO B2.5 Measured	0.61		2.29
Checksum	0.48	0.75	LRO B2.5 Measured	0.20		0.75
File Manager	0.02	0.04	LRO B2.5 Measured	0.01		0.04
Mode Manager	1.20	1.88	Estimate	0.50		1.88
SpaceWire Control	12.00	18.75	Estimate	5.00		18.75
1553 Control	6.00	9.38	Estimate	2.50		9.38
Power Control	1.20	1.88	Estimate	0.50		1.88
Instrument Support	14.40	22.50	Estimate	6.00		22.50
Solar Model	0.00	0.00	Estimate	0.00		0.00
Mechanisms Control	3.00	4.69	Estimate	1.25		4.69
Thermal Control	8.40	13.13	Estimate	3.50		13.13
Subtotal	48.59	75.92		20.24		

51% Margin

MEB FSW Testbed

Integrated Design Capability / Instrument Design Laboratory

Top-Level Requirements:

OCE2 Study Week: 4/23 - 4/27/12

- Support MEB FSW development
- Support MEB FSW build integration
- Support MEB FSW build test

Basis of Cost Estimate

- FSW development costs estimated using SEER: System Evaluation & Estimation of Resources
 - NASA-wide site license for SEER managed by Langley Research Center
 - The IDL made in-house assumptions for FSW re-use and labor efforts; the IDL cannot confidently make assumptions about unknown vendor reuse libraries or control measures, or labor efforts or experience, so we apply GSFC reuse and labor assumptions
- Grassroots test bed costs
 - FSW test bed simulator software development 2.0 FTEs
 - FSW test bed GSE \$293k
 - \$6k for 3 development PC
 - \$12k for 1 ASIST system
 - \$15k for 1553 bus monitor
 - \$20k for SpW bus monitor
 - \$40k digital analyzer
 - \$150k custom simulator hardware
 - \$50k for software development tools (i.e. CM, DR, etc.)

MEB SLOC Estimate

Integrated Design Capability / Instrument Design Laboratory

Module Name (Hierarchical/Indentured list as appropriate)	Environment	(Control, Data mining, Database, Web, etc.)	(New, Reuse, Rehost, Maintenance, COTS I&T, etc.)	Development Method	Software Lines of Code (Logical))					
					Total	New	Reuse		Deleted	
	(Flight, Ground)						Total Reuse SLOC	% Re- engin.		% Retest needed on Reuse code
OS API & OSAL	Flight	OS/Executive	COTS I&T	OTS integration	2338	0	2338	0%	0	10
Boot Loader	Flight	Flight System	Modification, Minor	Waterfall	1868	300	1568	50%	0	100
BSP	Flight	Flight System	Reengineering, Major	Waterfall	1492	600	892	100%	0	50
Executive Services	Flight	OS/Executive	Integrate /w config	OTS integration	4737	0	4737	0%	0	10
Event Service	Flight	Flight System	Integrate /w config	OTS integration	1429	0	1429	0%	0	10
File System	Flight	Flight System	Integrate /w config	OTS integration	763	0	763	0%	0	10
Mission Config Include Files	Flight	Flight System	Reengineering, Major	OTS integration	1857	500	300	100%	1057	80
Software Bus	Flight	Flight System	Integrate /w config	OTS integration	2017	0	2017	0%	0	10
Table Service	Flight	Flight System	Integrate /w config	OTS integration	2182	0	2182	0%	0	10
Time Service	Flight	Flight System	Integrate /w config	OTS integration	1941	0	1941	0%	0	10
cFE Configuration (hdr files)	Flight	Flight System	Integrate /w config	OTS integration	226	0	226	0%	0	10
cFE platform Support Pkg	Flight	Flight System	Reengineering, Major	Waterfall	827	400	427	100%	0	100
CFS Library	Flight	Flight System	Integrate /w config	OTS integration	166	0	166	0%	0	0
Checksum	Flight	Flight System	Integrate /w config	OTS integration	2811	0	2811	0%	0	10
File Manager	Flight	Flight System	Integrate /w config	OTS integration	1664	0	1664	0%	0	10
File Commanding	Flight	Flight System	Integrate /w config	OTS integration	447	0	447	0%	0	10
Health & Safety	Flight	Flight System	Integrate /w config	OTS integration	1433	0	1433	0%	0	10
Memory Manager	Flight	Flight System	Integrate /w config	OTS integration	1927	0	1927	0%	0	10
Scheduler	Flight	Flight System	Integrate /w config	OTS integration	1067	0	1067	0%	0	10
Housekeeping	Flight	Flight System	Reengineering, Major	Waterfall	554	300	254	100%	0	50
SpaceWire Control	Flight	Flight System	Reengineering, Major	Spiral	2676	1000	1676	100%	0	100
Mechanism Control	Flight	Flight System	New	Waterfall	500	400	100	100%	0	100
Thermal Control	Flight	Flight System	Reengineering, Major	Waterfall	500	300	200	100%	0	100
Instrument Support	Flight	Flight System	Reengineering, Major	Waterfall	1000	700	300	100%	0	100
1553 Bus Control	Flight	Flight System	Reengineering, Major	Spiral	3947	1500	2447	100%	0	100
Total SLOC					40369	6000	33312			
					10007			Resuse		

OCE2 Study Week: 4/23 - 4/27/12

Use or disclosure of this data is subject to the restriction on the title page of this document

Summary and Recommendations

- Line Of Code estimation shows 83% code reuse for MEB
 - High heritage
 - No technical show-stoppers

Backup Slides

- Development Approach
- Management Approach
- Verification & Validation

FSW Development Approach

Integrated Design Capability / Instrument Design Laboratory

Reuse LRO/GPM C&DH FSW (Med to high heritage, low risk - LRO launched 2009)

- LRO FSW Features (based on 582's Core Flight Executive)
 - Developed using FSW best practices consistent w/NPR 7150.2
 - Onboard file systems and associated file transfer mechanisms
 - Onboard networks with standard interfaces
 - Standard application interfaces (API) for ease of development and rapid prototyping
 - Dynamic application loading, middleware (SB) provide dynamic cmd/tlm registration
 - POSIX APIs and open source Integrated Development Environment
- Benefits

OCE2 Study Week: 4/23 - 4/27/12

- Will enable parallel collaborative development and system interoperability
- Will automate many previously manual development activities
- Will simplify technology infusion and system evolution during development and on-orbit
- Will enable rapid deployment of low cost, high quality mission software

Reengineer LRO/GPM FSW for all mission specific components

Mission-specific ops concept support, thermal electronics, etc.

Management Approach

Integrated Design Capability / Instrument Design Laboratory

- Product Development Process Will Comply with NPR 7150.2 (NASA Software Engineering Requirements and GOLD Rule)
- Development
 - Product Development Plan per 582 branch standards, approve by Branch & Project
 - Detailed FSW development schedule integrated with project & subsystems schedules
 - Requirements management using MKS tool
 - Monthly PSR with AETD & project; branch status reviews
 - Weekly system engineering meetings, FSW team meetings
 - FSW Design & Code reviews
 - Major milestones (SCR, PDR, CDR, etc)

Configuration Management

- FSW CM Plan per 582 branch standards, approve by Branch & Project
- Commercial CM tool (i.e., MKS) to manage source codes and document
- Proposed FSW changes affecting missions requirements, cost and/or schedule will be forwarded to Project level CCB

Test Plan

OCE2 Study Week: 4/23 - 4/27/12

- FSW Test Plan per 582 branch standards, approve by Branch & Project

FSW Verification and Validation

Integrated Design Capability / Instrument Design Laboratory

Unit Test

- Done by developers using PC tools
- Follow Branch 582 Unit Level Test Standard Tailored
- Includes Path testing, Input/Output testing, Boundary testing, and Error Reporting verification
- Occasionally BB H/W is required to verify H/W I/F

Build Integration Test

- Done by developers to verify that the FSW performs properly on the BB H/W in the FSW testbeds using embedded system tools
- First level functionality ensured for integrated software
- Build Test Team to assist in GSE I/F checkout

Build Verification Test

OCE2 Study Week: 4/23 - 4/27/12

- Done by independent test team with Science Team support on the BB H/W in the FSW testbeds using embedded system tools
- Test each requirement in the Flight Software Requirements documents (where possible at the build level)
- Use test scenarios to test requirements in both a positive and negative fashion.
- Scenarios constructed to combine requirements that are logically connected to create a test flow.
- Automation to be utilized as much as possible
- Requirements Traceability Matrix maintained

Use or disclosure of this data is subject to the restriction on the title page of this document